# Struct arrayvec::ArrayVec
[−]
[src]

pub struct ArrayVec<A: Array> { // some fields omitted }

A vector with a fixed capacity.

The `ArrayVec`

is a vector backed by a fixed size array. It keeps track of
the number of initialized elements.

The vector is a contiguous value that you can store directly on the stack if needed.

It offers a simple API but also dereferences to a slice, so that the full slice API is available.

ArrayVec can be converted into a by value iterator.

## Methods

`impl<A: Array> ArrayVec<A>`

[src]

`fn new() -> ArrayVec<A>`

Create a new empty `ArrayVec`

.

Capacity is inferred from the type parameter.

use arrayvec::ArrayVec; let mut array = ArrayVec::<[_; 16]>::new(); array.push(1); array.push(2); assert_eq!(&array[..], &[1, 2]); assert_eq!(array.capacity(), 16);

`fn len(&self) -> usize`

Return the number of elements in the `ArrayVec`

.

use arrayvec::ArrayVec; let mut array = ArrayVec::from([1, 2, 3]); array.pop(); assert_eq!(array.len(), 2);

`fn capacity(&self) -> usize`

Return the capacity of the `ArrayVec`

.

use arrayvec::ArrayVec; let array = ArrayVec::from([1, 2, 3]); assert_eq!(array.capacity(), 3);

`fn push(&mut self, element: A::Item) -> Option<A::Item>`

Push `element`

to the end of the vector.

Return `None`

if the push succeeds, or and return `Some(`

*element* `)`

if the vector is full.

use arrayvec::ArrayVec; let mut array = ArrayVec::<[_; 2]>::new(); array.push(1); array.push(2); let overflow = array.push(3); assert_eq!(&array[..], &[1, 2]); assert_eq!(overflow, Some(3));

`fn insert(&mut self, index: usize, element: A::Item) -> Option<A::Item>`

Insert `element`

in position `index`

.

Shift up all elements after `index`

. If any is pushed out, it is returned.

Return `None`

if no element is shifted out.

use arrayvec::ArrayVec; let mut array = ArrayVec::<[_; 2]>::new(); assert_eq!(array.insert(0, "x"), None); assert_eq!(array.insert(0, "y"), None); assert_eq!(array.insert(0, "z"), Some("x")); assert_eq!(array.insert(1, "w"), Some("y")); assert_eq!(&array[..], &["z", "w"]);

`fn pop(&mut self) -> Option<A::Item>`

Remove the last element in the vector.

Return `Some(`

*element* `)`

if the vector is non-empty, else `None`

.

use arrayvec::ArrayVec; let mut array = ArrayVec::<[_; 2]>::new(); array.push(1); assert_eq!(array.pop(), Some(1)); assert_eq!(array.pop(), None);

`fn swap_remove(&mut self, index: usize) -> Option<A::Item>`

Remove the element at `index`

and swap the last element into its place.

This operation is O(1).

Return `Some(`

*element* `)`

if the index is in bounds, else `None`

.

use arrayvec::ArrayVec; let mut array = ArrayVec::from([1, 2, 3]); assert_eq!(array.swap_remove(0), Some(1)); assert_eq!(&array[..], &[3, 2]); assert_eq!(array.swap_remove(10), None);

`fn remove(&mut self, index: usize) -> Option<A::Item>`

Remove the element at `index`

and shift down the following elements.

Return `Some(`

*element* `)`

if the index is in bounds, else `None`

.

use arrayvec::ArrayVec; let mut array = ArrayVec::from([1, 2, 3]); assert_eq!(array.remove(0), Some(1)); assert_eq!(&array[..], &[2, 3]); assert_eq!(array.remove(10), None);

`fn clear(&mut self)`

Remove all elements in the vector.

`fn retain<F>(&mut self, f: F) where F: FnMut(&mut A::Item) -> bool`

Retains only the elements specified by the predicate.

In other words, remove all elements `e`

such that `f(&mut e)`

returns false.
This method operates in place and preserves the order of the retained
elements.

use arrayvec::ArrayVec; let mut array = ArrayVec::from([1, 2, 3, 4]); array.retain(|x| *x & 1 != 0 ); assert_eq!(&array[..], &[1, 3]);

`unsafe fn set_len(&mut self, length: usize)`

Set the vector's length without dropping or moving out elements

May panic if `length`

is greater than the capacity.

This function is `unsafe`

because it changes the notion of the
number of “valid” elements in the vector. Use with care.

`fn drain<R: RangeArgument>(&mut self, range: R) -> Drain<A>`

Create a draining iterator that removes the specified range in the vector and yields the removed items from start to end. The element range is removed even if the iterator is not consumed until the end.

Note: It is unspecified how many elements are removed from the vector,
if the `Drain`

value is leaked.

**Panics** if the starting point is greater than the end point or if
the end point is greater than the length of the vector.

use arrayvec::ArrayVec; let mut v = ArrayVec::from([1, 2, 3]); let u: Vec<_> = v.drain(0..2).collect(); assert_eq!(&v[..], &[3]); assert_eq!(&u[..], &[1, 2]);

`fn into_inner(self) -> Result<A, Self>`

Return the inner fixed size array, if it is full to its capacity.

Return an `Ok`

value with the array if length equals capacity,
return an `Err`

with self otherwise.

`Note:`

This function may incur unproportionally large overhead
to move the array out, its performance is not optimal.

`fn dispose(self)`

Dispose of `self`

without the overwriting that is needed in Drop.

`fn as_slice(&self) -> &[A::Item]`

Return a slice containing all elements of the vector.

`fn as_mut_slice(&mut self) -> &mut [A::Item]`

Return a mutable slice containing all elements of the vector.

## Methods from Deref<Target=[A::Item]>

`fn len(&self) -> usize`

1.0.0

`fn is_empty(&self) -> bool`

1.0.0

`fn first(&self) -> Option<&T>`

1.0.0

Returns the first element of a slice, or `None`

if it is empty.

# Examples

let v = [10, 40, 30]; assert_eq!(Some(&10), v.first()); let w: &[i32] = &[]; assert_eq!(None, w.first());

`fn first_mut(&mut self) -> Option<&mut T>`

1.0.0

Returns a mutable pointer to the first element of a slice, or `None`

if it is empty.

# Examples

let x = &mut [0, 1, 2]; if let Some(first) = x.first_mut() { *first = 5; } assert_eq!(x, &[5, 1, 2]);

`fn split_first(&self) -> Option<(&T, &[T])>`

1.5.0

Returns the first and all the rest of the elements of a slice.

# Examples

let x = &[0, 1, 2]; if let Some((first, elements)) = x.split_first() { assert_eq!(first, &0); assert_eq!(elements, &[1, 2]); }

`fn split_first_mut(&mut self) -> Option<(&mut T, &mut [T])>`

1.5.0

Returns the first and all the rest of the elements of a slice.

# Examples

let x = &mut [0, 1, 2]; if let Some((first, elements)) = x.split_first_mut() { *first = 3; elements[0] = 4; elements[1] = 5; } assert_eq!(x, &[3, 4, 5]);

`fn split_last(&self) -> Option<(&T, &[T])>`

1.5.0

Returns the last and all the rest of the elements of a slice.

# Examples

let x = &[0, 1, 2]; if let Some((last, elements)) = x.split_last() { assert_eq!(last, &2); assert_eq!(elements, &[0, 1]); }

`fn split_last_mut(&mut self) -> Option<(&mut T, &mut [T])>`

1.5.0

Returns the last and all the rest of the elements of a slice.

# Examples

let x = &mut [0, 1, 2]; if let Some((last, elements)) = x.split_last_mut() { *last = 3; elements[0] = 4; elements[1] = 5; } assert_eq!(x, &[4, 5, 3]);

`fn last(&self) -> Option<&T>`

1.0.0

Returns the last element of a slice, or `None`

if it is empty.

# Examples

let v = [10, 40, 30]; assert_eq!(Some(&30), v.last()); let w: &[i32] = &[]; assert_eq!(None, w.last());

`fn last_mut(&mut self) -> Option<&mut T>`

1.0.0

Returns a mutable pointer to the last item in the slice.

# Examples

let x = &mut [0, 1, 2]; if let Some(last) = x.last_mut() { *last = 10; } assert_eq!(x, &[0, 1, 10]);

`fn get(&self, index: usize) -> Option<&T>`

1.0.0

Returns the element of a slice at the given index, or `None`

if the
index is out of bounds.

# Examples

let v = [10, 40, 30]; assert_eq!(Some(&40), v.get(1)); assert_eq!(None, v.get(3));

`fn get_mut(&mut self, index: usize) -> Option<&mut T>`

1.0.0

Returns a mutable reference to the element at the given index.

# Examples

let x = &mut [0, 1, 2]; if let Some(elem) = x.get_mut(1) { *elem = 42; } assert_eq!(x, &[0, 42, 2]);

or `None`

if the index is out of bounds

`unsafe fn get_unchecked(&self, index: usize) -> &T`

1.0.0

Returns a pointer to the element at the given index, without doing bounds checking. So use it very carefully!

# Examples

let x = &[1, 2, 4]; unsafe { assert_eq!(x.get_unchecked(1), &2); }

`unsafe fn get_unchecked_mut(&mut self, index: usize) -> &mut T`

1.0.0

Returns an unsafe mutable pointer to the element in index. So use it very carefully!

# Examples

let x = &mut [1, 2, 4]; unsafe { let elem = x.get_unchecked_mut(1); *elem = 13; } assert_eq!(x, &[1, 13, 4]);

`fn as_ptr(&self) -> *const T`

1.0.0

Returns an raw pointer to the slice's buffer

The caller must ensure that the slice outlives the pointer this function returns, or else it will end up pointing to garbage.

Modifying the slice may cause its buffer to be reallocated, which would also make any pointers to it invalid.

# Examples

let x = &[1, 2, 4]; let x_ptr = x.as_ptr(); unsafe { for i in 0..x.len() { assert_eq!(x.get_unchecked(i), &*x_ptr.offset(i as isize)); } }

`fn as_mut_ptr(&mut self) -> *mut T`

1.0.0

Returns an unsafe mutable pointer to the slice's buffer.

The caller must ensure that the slice outlives the pointer this function returns, or else it will end up pointing to garbage.

Modifying the slice may cause its buffer to be reallocated, which would also make any pointers to it invalid.

# Examples

let x = &mut [1, 2, 4]; let x_ptr = x.as_mut_ptr(); unsafe { for i in 0..x.len() { *x_ptr.offset(i as isize) += 2; } } assert_eq!(x, &[3, 4, 6]);

`fn swap(&mut self, a: usize, b: usize)`

1.0.0

Swaps two elements in a slice.

# Arguments

- a - The index of the first element
- b - The index of the second element

# Panics

Panics if `a`

or `b`

are out of bounds.

# Examples

let mut v = ["a", "b", "c", "d"]; v.swap(1, 3); assert!(v == ["a", "d", "c", "b"]);

`fn reverse(&mut self)`

1.0.0

Reverse the order of elements in a slice, in place.

# Example

let mut v = [1, 2, 3]; v.reverse(); assert!(v == [3, 2, 1]);

`fn iter(&self) -> Iter<T>`

1.0.0

Returns an iterator over the slice.

# Examples

let x = &[1, 2, 4]; let mut iterator = x.iter(); assert_eq!(iterator.next(), Some(&1)); assert_eq!(iterator.next(), Some(&2)); assert_eq!(iterator.next(), Some(&4)); assert_eq!(iterator.next(), None);

`fn iter_mut(&mut self) -> IterMut<T>`

1.0.0

Returns an iterator that allows modifying each value.

# Examples

let x = &mut [1, 2, 4]; { let iterator = x.iter_mut(); for elem in iterator { *elem += 2; } } assert_eq!(x, &[3, 4, 6]);

`fn windows(&self, size: usize) -> Windows<T>`

1.0.0

Returns an iterator over all contiguous windows of length
`size`

. The windows overlap. If the slice is shorter than
`size`

, the iterator returns no values.

# Panics

Panics if `size`

is 0.

# Example

let slice = ['r', 'u', 's', 't']; let mut iter = slice.windows(2); assert_eq!(iter.next().unwrap(), &['r', 'u']); assert_eq!(iter.next().unwrap(), &['u', 's']); assert_eq!(iter.next().unwrap(), &['s', 't']); assert!(iter.next().is_none());

If the slice is shorter than `size`

:

let slice = ['f', 'o', 'o']; let mut iter = slice.windows(4); assert!(iter.next().is_none());

`fn chunks(&self, size: usize) -> Chunks<T>`

1.0.0

Returns an iterator over `size`

elements of the slice at a
time. The chunks are slices and do not overlap. If `size`

does not divide the
length of the slice, then the last chunk will not have length
`size`

.

# Panics

Panics if `size`

is 0.

# Example

let slice = ['l', 'o', 'r', 'e', 'm']; let mut iter = slice.chunks(2); assert_eq!(iter.next().unwrap(), &['l', 'o']); assert_eq!(iter.next().unwrap(), &['r', 'e']); assert_eq!(iter.next().unwrap(), &['m']); assert!(iter.next().is_none());

`fn chunks_mut(&mut self, chunk_size: usize) -> ChunksMut<T>`

1.0.0

Returns an iterator over `chunk_size`

elements of the slice at a time.
The chunks are mutable slices, and do not overlap. If `chunk_size`

does
not divide the length of the slice, then the last chunk will not
have length `chunk_size`

.

# Panics

Panics if `chunk_size`

is 0.

# Examples

let v = &mut [0, 0, 0, 0, 0]; let mut count = 1; for chunk in v.chunks_mut(2) { for elem in chunk.iter_mut() { *elem += count; } count += 1; } assert_eq!(v, &[1, 1, 2, 2, 3]);

`fn split_at(&self, mid: usize) -> (&[T], &[T])`

1.0.0

Divides one slice into two at an index.

The first will contain all indices from `[0, mid)`

(excluding
the index `mid`

itself) and the second will contain all
indices from `[mid, len)`

(excluding the index `len`

itself).

# Panics

Panics if `mid > len`

.

# Examples

let v = [10, 40, 30, 20, 50]; let (v1, v2) = v.split_at(2); assert_eq!([10, 40], v1); assert_eq!([30, 20, 50], v2);

`fn split_at_mut(&mut self, mid: usize) -> (&mut [T], &mut [T])`

1.0.0

Divides one `&mut`

into two at an index.

The first will contain all indices from `[0, mid)`

(excluding
the index `mid`

itself) and the second will contain all
indices from `[mid, len)`

(excluding the index `len`

itself).

# Panics

Panics if `mid > len`

.

# Examples

let mut v = [1, 2, 3, 4, 5, 6]; // scoped to restrict the lifetime of the borrows { let (left, right) = v.split_at_mut(0); assert!(left == []); assert!(right == [1, 2, 3, 4, 5, 6]); } { let (left, right) = v.split_at_mut(2); assert!(left == [1, 2]); assert!(right == [3, 4, 5, 6]); } { let (left, right) = v.split_at_mut(6); assert!(left == [1, 2, 3, 4, 5, 6]); assert!(right == []); }

`fn split<F>(&self, pred: F) -> Split<T, F> where F: FnMut(&T) -> bool`

1.0.0

Returns an iterator over subslices separated by elements that match
`pred`

. The matched element is not contained in the subslices.

# Examples

let slice = [10, 40, 33, 20]; let mut iter = slice.split(|num| num % 3 == 0); assert_eq!(iter.next().unwrap(), &[10, 40]); assert_eq!(iter.next().unwrap(), &[20]); assert!(iter.next().is_none());

If the first element is matched, an empty slice will be the first item returned by the iterator. Similarly, if the last element in the slice is matched, an empty slice will be the last item returned by the iterator:

let slice = [10, 40, 33]; let mut iter = slice.split(|num| num % 3 == 0); assert_eq!(iter.next().unwrap(), &[10, 40]); assert_eq!(iter.next().unwrap(), &[]); assert!(iter.next().is_none());

If two matched elements are directly adjacent, an empty slice will be present between them:

let slice = [10, 6, 33, 20]; let mut iter = slice.split(|num| num % 3 == 0); assert_eq!(iter.next().unwrap(), &[10]); assert_eq!(iter.next().unwrap(), &[]); assert_eq!(iter.next().unwrap(), &[20]); assert!(iter.next().is_none());

`fn split_mut<F>(&mut self, pred: F) -> SplitMut<T, F> where F: FnMut(&T) -> bool`

1.0.0

Returns an iterator over mutable subslices separated by elements that
match `pred`

. The matched element is not contained in the subslices.

# Examples

let mut v = [10, 40, 30, 20, 60, 50]; for group in v.split_mut(|num| *num % 3 == 0) { group[0] = 1; } assert_eq!(v, [1, 40, 30, 1, 60, 1]);

`fn splitn<F>(&self, n: usize, pred: F) -> SplitN<T, F> where F: FnMut(&T) -> bool`

1.0.0

Returns an iterator over subslices separated by elements that match
`pred`

, limited to returning at most `n`

items. The matched element is
not contained in the subslices.

The last element returned, if any, will contain the remainder of the slice.

# Examples

Print the slice split once by numbers divisible by 3 (i.e. `[10, 40]`

,
`[20, 60, 50]`

):

let v = [10, 40, 30, 20, 60, 50]; for group in v.splitn(2, |num| *num % 3 == 0) { println!("{:?}", group); }

`fn splitn_mut<F>(&mut self, n: usize, pred: F) -> SplitNMut<T, F> where F: FnMut(&T) -> bool`

1.0.0

Returns an iterator over subslices separated by elements that match
`pred`

, limited to returning at most `n`

items. The matched element is
not contained in the subslices.

The last element returned, if any, will contain the remainder of the slice.

# Examples

let mut v = [10, 40, 30, 20, 60, 50]; for group in v.splitn_mut(2, |num| *num % 3 == 0) { group[0] = 1; } assert_eq!(v, [1, 40, 30, 1, 60, 50]);

`fn rsplitn<F>(&self, n: usize, pred: F) -> RSplitN<T, F> where F: FnMut(&T) -> bool`

1.0.0

Returns an iterator over subslices separated by elements that match
`pred`

limited to returning at most `n`

items. This starts at the end of
the slice and works backwards. The matched element is not contained in
the subslices.

The last element returned, if any, will contain the remainder of the slice.

# Examples

Print the slice split once, starting from the end, by numbers divisible
by 3 (i.e. `[50]`

, `[10, 40, 30, 20]`

):

let v = [10, 40, 30, 20, 60, 50]; for group in v.rsplitn(2, |num| *num % 3 == 0) { println!("{:?}", group); }

`fn rsplitn_mut<F>(&mut self, n: usize, pred: F) -> RSplitNMut<T, F> where F: FnMut(&T) -> bool`

1.0.0

Returns an iterator over subslices separated by elements that match
`pred`

limited to returning at most `n`

items. This starts at the end of
the slice and works backwards. The matched element is not contained in
the subslices.

The last element returned, if any, will contain the remainder of the slice.

# Examples

let mut s = [10, 40, 30, 20, 60, 50]; for group in s.rsplitn_mut(2, |num| *num % 3 == 0) { group[0] = 1; } assert_eq!(s, [1, 40, 30, 20, 60, 1]);

`fn contains(&self, x: &T) -> bool where T: PartialEq<T>`

1.0.0

Returns true if the slice contains an element with the given value.

# Examples

let v = [10, 40, 30]; assert!(v.contains(&30)); assert!(!v.contains(&50));

`fn starts_with(&self, needle: &[T]) -> bool where T: PartialEq<T>`

1.0.0

Returns true if `needle`

is a prefix of the slice.

# Examples

let v = [10, 40, 30]; assert!(v.starts_with(&[10])); assert!(v.starts_with(&[10, 40])); assert!(!v.starts_with(&[50])); assert!(!v.starts_with(&[10, 50]));

`fn ends_with(&self, needle: &[T]) -> bool where T: PartialEq<T>`

1.0.0

Returns true if `needle`

is a suffix of the slice.

# Examples

let v = [10, 40, 30]; assert!(v.ends_with(&[30])); assert!(v.ends_with(&[40, 30])); assert!(!v.ends_with(&[50])); assert!(!v.ends_with(&[50, 30]));

`fn binary_search(&self, x: &T) -> Result<usize, usize> where T: Ord`

1.0.0

Binary search a sorted slice for a given element.

If the value is found then `Ok`

is returned, containing the
index of the matching element; if the value is not found then
`Err`

is returned, containing the index where a matching
element could be inserted while maintaining sorted order.

# Example

Looks up a series of four elements. The first is found, with a
uniquely determined position; the second and third are not
found; the fourth could match any position in `[1,4]`

.

let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]; assert_eq!(s.binary_search(&13), Ok(9)); assert_eq!(s.binary_search(&4), Err(7)); assert_eq!(s.binary_search(&100), Err(13)); let r = s.binary_search(&1); assert!(match r { Ok(1...4) => true, _ => false, });

`fn binary_search_by<'a, F>(&'a self, f: F) -> Result<usize, usize> where F: FnMut(&'a T) -> Ordering`

1.0.0

Binary search a sorted slice with a comparator function.

The comparator function should implement an order consistent
with the sort order of the underlying slice, returning an
order code that indicates whether its argument is `Less`

,
`Equal`

or `Greater`

the desired target.

If a matching value is found then returns `Ok`

, containing
the index for the matched element; if no match is found then
`Err`

is returned, containing the index where a matching
element could be inserted while maintaining sorted order.

# Example

Looks up a series of four elements. The first is found, with a
uniquely determined position; the second and third are not
found; the fourth could match any position in `[1,4]`

.

let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]; let seek = 13; assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Ok(9)); let seek = 4; assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(7)); let seek = 100; assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(13)); let seek = 1; let r = s.binary_search_by(|probe| probe.cmp(&seek)); assert!(match r { Ok(1...4) => true, _ => false, });

`fn binary_search_by_key<'a, B, F>(&'a self, b: &B, f: F) -> Result<usize, usize> where B: Ord, F: FnMut(&'a T) -> B`

1.10.0

Binary search a sorted slice with a key extraction function.

Assumes that the slice is sorted by the key, for instance with
`sort_by_key`

using the same key extraction function.

If a matching value is found then returns `Ok`

, containing the
index for the matched element; if no match is found then `Err`

is returned, containing the index where a matching element could
be inserted while maintaining sorted order.

# Examples

Looks up a series of four elements in a slice of pairs sorted by
their second elements. The first is found, with a uniquely
determined position; the second and third are not found; the
fourth could match any position in `[1,4]`

.

let s = [(0, 0), (2, 1), (4, 1), (5, 1), (3, 1), (1, 2), (2, 3), (4, 5), (5, 8), (3, 13), (1, 21), (2, 34), (4, 55)]; assert_eq!(s.binary_search_by_key(&13, |&(a,b)| b), Ok(9)); assert_eq!(s.binary_search_by_key(&4, |&(a,b)| b), Err(7)); assert_eq!(s.binary_search_by_key(&100, |&(a,b)| b), Err(13)); let r = s.binary_search_by_key(&1, |&(a,b)| b); assert!(match r { Ok(1...4) => true, _ => false, });

`fn sort(&mut self) where T: Ord`

1.0.0

This is equivalent to `self.sort_by(|a, b| a.cmp(b))`

.

This sort is stable and `O(n log n)`

worst-case but allocates
approximately `2 * n`

where `n`

is the length of `self`

.

# Examples

let mut v = [-5, 4, 1, -3, 2]; v.sort(); assert!(v == [-5, -3, 1, 2, 4]);

`fn sort_by_key<B, F>(&mut self, f: F) where B: Ord, F: FnMut(&T) -> B`

1.7.0

Sorts the slice, in place, using `key`

to extract a key by which to
order the sort by.

This sort is stable and `O(n log n)`

worst-case but allocates
approximately `2 * n`

, where `n`

is the length of `self`

.

# Examples

let mut v = [-5i32, 4, 1, -3, 2]; v.sort_by_key(|k| k.abs()); assert!(v == [1, 2, -3, 4, -5]);

`fn sort_by<F>(&mut self, compare: F) where F: FnMut(&T, &T) -> Ordering`

1.0.0

Sorts the slice, in place, using `compare`

to compare
elements.

This sort is stable and `O(n log n)`

worst-case but allocates
approximately `2 * n`

, where `n`

is the length of `self`

.

# Examples

let mut v = [5, 4, 1, 3, 2]; v.sort_by(|a, b| a.cmp(b)); assert!(v == [1, 2, 3, 4, 5]); // reverse sorting v.sort_by(|a, b| b.cmp(a)); assert!(v == [5, 4, 3, 2, 1]);

`fn clone_from_slice(&mut self, src: &[T]) where T: Clone`

1.7.0

Copies the elements from `src`

into `self`

.

The length of `src`

must be the same as `self`

.

# Panics

This function will panic if the two slices have different lengths.

# Example

let mut dst = [0, 0, 0]; let src = [1, 2, 3]; dst.clone_from_slice(&src); assert!(dst == [1, 2, 3]);

`fn copy_from_slice(&mut self, src: &[T]) where T: Copy`

1.9.0

Copies all elements from `src`

into `self`

, using a memcpy.

The length of `src`

must be the same as `self`

.

# Panics

This function will panic if the two slices have different lengths.

# Example

let mut dst = [0, 0, 0]; let src = [1, 2, 3]; dst.copy_from_slice(&src); assert_eq!(src, dst);

`fn to_vec(&self) -> Vec<T> where T: Clone`

1.0.0

Copies `self`

into a new `Vec`

.

# Examples

let s = [10, 40, 30]; let x = s.to_vec(); // Here, `s` and `x` can be modified independently.

`fn into_vec(self: Box<[T]>) -> Vec<T>`

1.0.0

Converts `self`

into a vector without clones or allocation.

# Examples

let s: Box<[i32]> = Box::new([10, 40, 30]); let x = s.into_vec(); // `s` cannot be used anymore because it has been converted into `x`. assert_eq!(x, vec!(10, 40, 30));

## Trait Implementations

`impl<A: Array> Drop for ArrayVec<A>`

[src]

`impl<A: Array> Deref for ArrayVec<A>`

[src]

`type Target = [A::Item]`

The resulting type after dereferencing

`fn deref(&self) -> &[A::Item]`

The method called to dereference a value

`impl<A: Array> DerefMut for ArrayVec<A>`

[src]

`impl<A: Array> From<A> for ArrayVec<A>`

[src]

Create an `ArrayVec`

from an array.

use arrayvec::ArrayVec; let mut array = ArrayVec::from([1, 2, 3]); assert_eq!(array.len(), 3); assert_eq!(array.capacity(), 3);

`fn from(array: A) -> Self`

Performs the conversion.

`impl<'a, A: Array> IntoIterator for &'a ArrayVec<A>`

[src]

Iterate the `ArrayVec`

with references to each element.

use arrayvec::ArrayVec; let array = ArrayVec::from([1, 2, 3]); for elt in &array { // ... }

`type Item = &'a A::Item`

The type of the elements being iterated over.

`type IntoIter = Iter<'a, A::Item>`

Which kind of iterator are we turning this into?

`fn into_iter(self) -> Self::IntoIter`

Creates an iterator from a value. Read more

`impl<'a, A: Array> IntoIterator for &'a mut ArrayVec<A>`

[src]

Iterate the `ArrayVec`

with mutable references to each element.

use arrayvec::ArrayVec; let mut array = ArrayVec::from([1, 2, 3]); for elt in &mut array { // ... }

`type Item = &'a mut A::Item`

The type of the elements being iterated over.

`type IntoIter = IterMut<'a, A::Item>`

Which kind of iterator are we turning this into?

`fn into_iter(self) -> Self::IntoIter`

Creates an iterator from a value. Read more

`impl<A: Array> IntoIterator for ArrayVec<A>`

[src]

Iterate the `ArrayVec`

with each element by value.

The vector is consumed by this operation.

use arrayvec::ArrayVec; for elt in ArrayVec::from([1, 2, 3]) { // ... }

`type Item = A::Item`

The type of the elements being iterated over.

`type IntoIter = IntoIter<A>`

Which kind of iterator are we turning this into?

`fn into_iter(self) -> IntoIter<A>`

Creates an iterator from a value. Read more

`impl<A: Array> Extend<A::Item> for ArrayVec<A>`

[src]

Extend the `ArrayVec`

with an iterator.

Does not extract more items than there is space for. No error occurs if there are more iterator elements.

`fn extend<T: IntoIterator<Item=A::Item>>(&mut self, iter: T)`

Extends a collection with the contents of an iterator. Read more

`impl<A: Array> FromIterator<A::Item> for ArrayVec<A>`

[src]

Create an `ArrayVec`

from an iterator.

Does not extract more items than there is space for. No error occurs if there are more iterator elements.

`fn from_iter<T: IntoIterator<Item=A::Item>>(iter: T) -> Self`

Creates a value from an iterator. Read more

`impl<A: Array> Clone for ArrayVec<A> where A::Item: Clone`

[src]

`fn clone(&self) -> Self`

Returns a copy of the value. Read more

`fn clone_from(&mut self, rhs: &Self)`

Performs copy-assignment from `source`

. Read more

`impl<A: Array> Hash for ArrayVec<A> where A::Item: Hash`

[src]

`fn hash<H: Hasher>(&self, state: &mut H)`

Feeds this value into the state given, updating the hasher as necessary.

`fn hash_slice<H>(data: &[Self], state: &mut H) where H: Hasher`

1.3.0

Feeds a slice of this type into the state provided.

`impl<A: Array> PartialEq for ArrayVec<A> where A::Item: PartialEq`

[src]

`fn eq(&self, other: &Self) -> bool`

This method tests for `self`

and `other`

values to be equal, and is used by `==`

. Read more

`fn ne(&self, other: &Rhs) -> bool`

1.0.0

This method tests for `!=`

.

`impl<A: Array> PartialEq<[A::Item]> for ArrayVec<A> where A::Item: PartialEq`

[src]

`fn eq(&self, other: &[A::Item]) -> bool`

This method tests for `self`

and `other`

values to be equal, and is used by `==`

. Read more

`fn ne(&self, other: &Rhs) -> bool`

1.0.0

This method tests for `!=`

.

`impl<A: Array> Eq for ArrayVec<A> where A::Item: Eq`

[src]

`impl<A: Array> Borrow<[A::Item]> for ArrayVec<A>`

[src]

`impl<A: Array> BorrowMut<[A::Item]> for ArrayVec<A>`

[src]

`fn borrow_mut(&mut self) -> &mut [A::Item]`

Mutably borrows from an owned value. Read more

`impl<A: Array> AsRef<[A::Item]> for ArrayVec<A>`

[src]

`impl<A: Array> AsMut<[A::Item]> for ArrayVec<A>`

[src]

`impl<A: Array> Debug for ArrayVec<A> where A::Item: Debug`

[src]

`impl<A: Array> Default for ArrayVec<A>`

[src]

`impl<A: Array> PartialOrd for ArrayVec<A> where A::Item: PartialOrd`

[src]

`fn partial_cmp(&self, other: &ArrayVec<A>) -> Option<Ordering>`

This method returns an ordering between `self`

and `other`

values if one exists. Read more

`fn lt(&self, other: &Self) -> bool`

This method tests less than (for `self`

and `other`

) and is used by the `<`

operator. Read more

`fn le(&self, other: &Self) -> bool`

This method tests less than or equal to (for `self`

and `other`

) and is used by the `<=`

operator. Read more

`fn ge(&self, other: &Self) -> bool`

This method tests greater than or equal to (for `self`

and `other`

) and is used by the `>=`

operator. Read more

`fn gt(&self, other: &Self) -> bool`

This method tests greater than (for `self`

and `other`

) and is used by the `>`

operator. Read more

`impl<A: Array> Ord for ArrayVec<A> where A::Item: Ord`

[src]

`fn cmp(&self, other: &ArrayVec<A>) -> Ordering`

This method returns an `Ordering`

between `self`

and `other`

. Read more

`impl<A: Array<Item=u8>> Write for ArrayVec<A>`

[src]

`Write`

appends written data to the end of the vector.

Requires `features="std"`

.

`fn write(&mut self, data: &[u8]) -> Result<usize>`

Write a buffer into this object, returning how many bytes were written. Read more

`fn flush(&mut self) -> Result<()>`

Flush this output stream, ensuring that all intermediately buffered contents reach their destination. Read more

`fn write_all(&mut self, buf: &[u8]) -> Result<(), Error>`

1.0.0

Attempts to write an entire buffer into this write. Read more

`fn write_fmt(&mut self, fmt: Arguments) -> Result<(), Error>`

1.0.0

Writes a formatted string into this writer, returning any error encountered. Read more

`fn by_ref(&mut self) -> &mut Self`

1.0.0

Creates a "by reference" adaptor for this instance of `Write`

. Read more