1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
use std::borrow::Borrow;
use std::fmt;
use std::hash::{Hash, Hasher};
use std::mem;
use std::ptr;
use std::ops::{Deref, DerefMut};
use std::str;
use std::slice;

use array::Array;
use array::Index;
use CapacityError;

/// A string with a fixed capacity.
///
/// The `ArrayString` is a string backed by a fixed size array. It keeps track
/// of its length.
///
/// The string is a contiguous value that you can store directly on the stack
/// if needed.
#[derive(Copy)]
pub struct ArrayString<A: Array<Item=u8>> {
    xs: A,
    len: A::Index,
}

impl<A: Array<Item=u8>> ArrayString<A> {
    /// Create a new empty `ArrayString`.
    ///
    /// Capacity is inferred from the type parameter.
    ///
    /// ```
    /// use arrayvec::ArrayString;
    ///
    /// let mut string = ArrayString::<[_; 16]>::new();
    /// string.push_str("foo");
    /// assert_eq!(&string[..], "foo");
    /// assert_eq!(string.capacity(), 16);
    /// ```
    pub fn new() -> ArrayString<A> {
        unsafe {
            ArrayString {
                xs: ::new_array(),
                len: Index::from(0),
            }
        }
    }

    /// Create a new `ArrayString` from a `str`.
    ///
    /// Capacity is inferred from the type parameter.
    ///
    /// **Errors** if the backing array is not large enough to fit the string.
    ///
    /// ```
    /// use arrayvec::ArrayString;
    ///
    /// let mut string = ArrayString::<[_; 3]>::from("foo").unwrap();
    /// assert_eq!(&string[..], "foo");
    /// assert_eq!(string.len(), 3);
    /// assert_eq!(string.capacity(), 3);
    /// ```
    pub fn from(s: &str) -> Result<Self, CapacityError<&str>> {
        let mut arraystr = Self::new();
        try!(arraystr.push_str(s));
        Ok(arraystr)
    }

    /// Return the capacity of the `ArrayString`.
    ///
    /// ```
    /// use arrayvec::ArrayString;
    ///
    /// let string = ArrayString::<[_; 3]>::new();
    /// assert_eq!(string.capacity(), 3);
    /// ```
    #[inline]
    pub fn capacity(&self) -> usize { A::capacity() }

    /// Adds the given char to the end of the string.
    ///
    /// Returns `Ok` if the push succeeds.
    ///
    /// **Errors** if the backing array is not large enough to fit the additional char.
    ///
    /// ```
    /// use arrayvec::ArrayString;
    ///
    /// let mut string = ArrayString::<[_; 2]>::new();
    ///
    /// string.push('a').unwrap();
    /// string.push('b').unwrap();
    /// let overflow = string.push('c');
    ///
    /// assert_eq!(&string[..], "ab");
    /// assert_eq!(overflow.unwrap_err().element(), 'c');
    /// ```
    pub fn push(&mut self, c: char) -> Result<(), CapacityError<char>> {
        use std::fmt::Write;
        self.write_char(c).map_err(|_| CapacityError::new(c))
    }

    /// Adds the given string slice to the end of the string.
    ///
    /// Returns `Ok` if the push succeeds.
    ///
    /// **Errors** if the backing array is not large enough to fit the string.
    ///
    /// ```
    /// use arrayvec::ArrayString;
    ///
    /// let mut string = ArrayString::<[_; 2]>::new();
    ///
    /// string.push_str("a").unwrap();
    /// let overflow1 = string.push_str("bc");
    /// string.push_str("d").unwrap();
    /// let overflow2 = string.push_str("ef");
    ///
    /// assert_eq!(&string[..], "ad");
    /// assert_eq!(overflow1.unwrap_err().element(), "bc");
    /// assert_eq!(overflow2.unwrap_err().element(), "ef");
    /// ```
    pub fn push_str<'a>(&mut self, s: &'a str) -> Result<(), CapacityError<&'a str>> {
        if s.len() > self.capacity() - self.len() {
            return Err(CapacityError::new(s));
        }
        unsafe {
            let dst = self.xs.as_mut_ptr().offset(self.len() as isize);
            let src = s.as_ptr();
            ptr::copy_nonoverlapping(src, dst, s.len());
            let newl = self.len() + s.len();
            self.set_len(newl);
        }
        Ok(())
    }

    /// Make the string empty.
    pub fn clear(&mut self) {
        unsafe {
            self.set_len(0);
        }
    }

    /// Set the strings's length.
    ///
    /// May panic if `length` is greater than the capacity.
    ///
    /// This function is `unsafe` because it changes the notion of the
    /// number of “valid” bytes in the string. Use with care.
    #[inline]
    pub unsafe fn set_len(&mut self, length: usize) {
        debug_assert!(length <= self.capacity());
        self.len = Index::from(length);
    }

    /// Return a string slice of the whole `ArrayString`.
    pub fn as_str(&self) -> &str {
        self
    }
}

impl<A: Array<Item=u8>> Deref for ArrayString<A> {
    type Target = str;
    #[inline]
    fn deref(&self) -> &str {
        unsafe {
            let sl = slice::from_raw_parts(self.xs.as_ptr(), self.len.to_usize());
            str::from_utf8_unchecked(sl)
        }
    }
}

impl<A: Array<Item=u8>> DerefMut for ArrayString<A> {
    #[inline]
    fn deref_mut(&mut self) -> &mut str {
        unsafe {
            let sl = slice::from_raw_parts_mut(self.xs.as_mut_ptr(), self.len.to_usize());
            // FIXME: Nothing but transmute to do this right now
            mem::transmute(sl)
        }
    }
}

impl<A: Array<Item=u8>> PartialEq for ArrayString<A> {
    fn eq(&self, rhs: &Self) -> bool {
        **self == **rhs
    }
}

impl<A: Array<Item=u8>> PartialEq<str> for ArrayString<A> {
    fn eq(&self, rhs: &str) -> bool {
        &**self == rhs
    }
}

impl<A: Array<Item=u8>> PartialEq<ArrayString<A>> for str {
    fn eq(&self, rhs: &ArrayString<A>) -> bool {
        self == &**rhs
    }
}

impl<A: Array<Item=u8>> Eq for ArrayString<A> { }

impl<A: Array<Item=u8>> Hash for ArrayString<A> {
    fn hash<H: Hasher>(&self, h: &mut H) {
        (**self).hash(h)
    }
}

impl<A: Array<Item=u8>> Borrow<str> for ArrayString<A> {
    fn borrow(&self) -> &str { self }
}

impl<A: Array<Item=u8>> AsRef<str> for ArrayString<A> {
    fn as_ref(&self) -> &str { self }
}

impl<A: Array<Item=u8>> fmt::Debug for ArrayString<A> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { (**self).fmt(f) }
}

impl<A: Array<Item=u8>> fmt::Display for ArrayString<A> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { (**self).fmt(f) }
}

/// `Write` appends written data to the end of the string.
impl<A: Array<Item=u8>> fmt::Write for ArrayString<A> {
    fn write_str(&mut self, s: &str) -> fmt::Result {
        self.push_str(s).map_err(|_| fmt::Error)
    }
}

impl<A: Array<Item=u8> + Copy> Clone for ArrayString<A> {
    fn clone(&self) -> ArrayString<A> {
        *self
    }

    fn clone_from(&mut self, rhs: &Self) {
        // guaranteed to fit due to types matching.
        self.clear();
        self.push_str(rhs).ok();
    }
}